home *** CD-ROM | disk | FTP | other *** search
- à 3.4 Repeated, Real Roots ç ê Characteristic Equation
-
- äèèFïd ê general solution ç ê homogeneious,
- èèèèèèèèdifferential equation.
-
- â è The differential equation
-
- y»» - 6y» + 9y = 0
-
- è has ê general solution
-
- C¬eÄ╣ + C½xeÄ╣
-
- éS The lïear, second order, constant coefficient, homogenous
- differential equation
-
- ay»» + by» + cy = 0
-
- has solutions ç ê formèe¡╣èwhere m is a solution ç ê
- CHARACTERISTIC EQUATION
-
- amì + bm + c = 0
-
- When ê DISCRIMINANT, bì - 4ac, is ZER0 ê quadratic
- equation has one, repeated real root.èFrom ê quadratic
- formula ê value ç this repeated root is
- m = -b/2a
- Sïce two ïdependent solutions ç ê differential equation
- are needed, ê GENERAL SOLUTION is ç ê form
-
- y = C¬e¡╣ + C½xe¡╣
- èèè
- èèèèThis can be shown by assumïg ê second solution has ê form
- èèèèv(x)e¡╣ å solvïg for v(x) by takïg derivatives å substitu-
- èèèèïg back ï ê origïal differential equation.èIt can be
- èèèèseen that v(x) = x.è
-
- 1 y»»è+è4y»è+è4yè=è0
-
-
- A) C¬eú╣»ì + C½xeú╣»ì B) C¬eúì╣ + C½xeúì╣
-
- C) C¬e╣»ì + C½xe╣»ì D) C¬eì╣ + C½xeì╣
-
- ü Forè
- y»» + 4y» + 4y = 0,
- ê characteristic equation is
- mì + 4m + 4 = 0
- This facërs ïë
- (m + 2)ì = 0
- The solutions are
- m = -2, -2
- With repeated, real roots, ê general solution is
- C¬eúì╣ + C½xeúì╣
-
- Ç B
-
- 2 y»» - 6y» + 9y = 0
-
-
- A) C¬eúÄ╣ + C½xeúÄ╣ B) C¬eú╣»Ä + C½xeú╣»Ä
-
- C) C¬eÄ╣ + C½xeÄ╣ D) C¬eú╣»Ä + C½xe╣»Ä
-
- ü Forè
- y»» - 6y» + 9y = 0,
- ê characteristic equation is
- mì - 6m + 9 = 0
- This facërs ïë
- (m - 3)ì = 0
- The solutions are
- m = 3, 3
- With repeated, real roots, ê general solution is
- C¬eÄ╣ + C½xeÄ╣
-
- Ç C
-
- 3 y»» + 10y» + 25yè=è0
-
-
- A) C¬eúÉ╣ + C½xeúÉ╣èèB) C¬eú╣»É + C½xeú╣»É
-
- C) C¬eÉ╣ + C½xeÉ╣èèèD) C¬e╣»É + C½xe╣»É
-
- ü Forè
- y»» + 10y» + 25y = 0,
- ê characteristic equation is
- mì + 10m + 25 = 0
- This facërs ïë
- (m + 5)ì = 0
- The solutions are
- m = -5, -5
- With repeated, real roots, ê general solution is
- C¬eúÉ╣ + C½xeúÉ╣
-
- Ç A
-
- 4 4y»» + 4y» + y =è0
-
-
- A) C¬eú╣»ì + C½xeú╣»ì B) C¬eúì╣ + C½xeúì╣
-
- C) C¬e╣»ì + C½xe╣»ì D) C¬eì╣ + C½xeì╣
-
- ü Forè
- 4y»» + 4y» + y = 0,
- ê characteristic equation is
- 4mì + 4m + 1 = 0
- This facërs ïë
- (2m + 1)ì = 0
- The solutions are
- m = -1/2, -1/2
- With repeated, real roots, ê general solution is
- C¬eú╣»ì + C½xeú╣»ì
-
- Ç A
-
- 5 16y»» - 8y» + y = 0
-
-
- A) C¬eú╣»Å + C½xeú╣»Å B) C¬eúÅ╣ + C½xeúÅ╣
-
- C) C¬e╣»Å + C½xe╣»Å D) C¬eÅ╣ + C½xeÅ╣
-
- ü Forè
- 16y»» - 8y» + y = 0,
- ê characteristic equation is
- 16mì - 8m + 1 = 0
- This facërs ïë
- (4m - 1)ì = 0
- The solutions are
- m = -1/4, -1/4
- With repeated, real roots, ê general solution is
- C¬eú╣»Å + C½xeú╣»Å
-
- Ç A
-
- äè Solve ê followïg ïitial value problem.
-
- â èFor ê ïitial value problem
- y»» + 2y» + y = 0 ;èy(0) = 3 ;èy»(0) = -2
- The general solution isèè y = C¬eú╣ + C½xeú╣
- Substitutïg x = 0 ïë ê solution å its derivative yields
- C¬ = 3 ; C½ = 1
- Thus ê solution ë ê ïitial value problem is
- y = 3eú╣ + xeú╣
-
- éS èTo solve an Initial Value Problem
- ay»» + by» + cy = 0è
- y(x╠) = y╠ ; y»(x╠) = y»╠
-
- has two stages.
- 1) Fïd a general solution ç ê differential equation.
- As this is a second order, differential equation,
- ê general solution will have TWO ARBITRARY CONSTANTS
- 2) Substitute ê INITIAL VALUE ç ê ïdependent
- variable ïë ê general solution å its deriviative
- å set êm equal ë ê TWO INITIAL CONDITIONS.èThis
- produces two lïear equations ï two unknowns (ê
- arbitrary constants).èSolvïg this system yields ê
- value ç ê constants å ê solution ç ê ïitial
- value problem.
-
- 6 y»» - 4y» + 4y = 0èè
- y(0) = -2è;èy»(0) = 4
-
-
- A) 2eì╣ + 8xeì╣ B) 2eì╣ - 8xeì╣
-
- C) -2eì╣ + 8xeì╣ D) -2eì╣ - 8xeì╣
-
- üèè For ê ïitial value problem
- y»» - 4y» + 4y = 0 ;èy(0) = -2 ;èy»(0) = 4
- The characteristic equation is
- mì - 4m + 4 = 0
- This facërs ë
- (m - 2)ì = 0
- The repeated, real, solutions are
- m = 2, 2
- The general solution is
- y = C¬eì╣ + C½xeì╣
- Substitutïg x = 0 ïë ê solution å its derivative yields
- y(0)è=èC¬èèè = -2
- y»(0) =è2C¬ + C½ =è4
- Solvïg this system yields
- C¬ = -2 ; C½ = 8
- Thus ê solution ë ê ïitial value problem is
- y = -2eì╣ + 8xeì╣
-
- Ç C
-
- 7 9y»» + 6y» + y = 0è
- y(0) = 9è;èy»(0) = 7
-
-
- A)è 9eú╣»Ä + 4xeú╣»Äèè B)èè -9e╣»Ä + 4xe╣»Ä
-
- C)è 9e╣»Ä - 4xe╣»Ä èè D)èè -9e╣»Ä - 4e╣»Ä
-
- üèè For ê ïitial value problem
- 9y»» + 6y» + y = 0 ;èy(0) = 9 ;èy»(0) = 1
- The characteristic equation is
- 9mì + 6m + 1 = 0
- This facërs ë
- (3m + 1)ì = 0
- The repeated, real, solutions are
- m = -1/3, -1/3
- The general solution is
- y = C¬eú╣»Ä + C½xeú╣»Ä
- Substitutïg x = 0 ïë ê solution å its derivative yields
- y(0)è=è C¬èèèè= 9
- y»(0) =è-C¬/3 + C½ =è1
- Solvïg this system yields
- C¬ = 9 ; C½ = 4
- Thus ê solution ë ê ïitial value problem is
- y = 9eú╣»Ä + 4xeú╣»Ä
-
- Ç A
-
- 8 y»» - 12y» + 36 = 0èè
- y(1) = 4 ;èy»(2) = 0
-
-
- A)è28eúæeæ╣ + 24eúæeæ╣ B)è-28eúæeæ╣ + 24eúæxeæ╣
-
- C)è28eúæeæ╣ - 24eúæeæ╣ D)è-28eúæeæ╣ - 24eúæeæ╣
-
- üèè For ê ïitial value problem
- y»» - 12» + 36y = 0è
- y(1) = -4 ;èy»(1) = 0
- The characteristic equation is
- mì - 12m + 36 = 0
- This facërs ë
- (m - 6)ì = 0
- The repeated, real, solutions are
- m = 6, 6
- The general solution is
- y = C¬eæ╣ + C½xeæ╣
- Substitutïg x = 1 ïë ê solution å its derivative yields
- y(1)è=è C¬eæ +èC½eæ = -4
- y»(1) =è6C¬eæ + 7C½eæ =è0
- Solvïg this system yields
- C¬ = -28eúæ ; C½ = 24eúæ
- Thus ê solution ë ê ïitial value problem is
- y = -28eúæeæ╣ + 24eúæxeæ╣
-
- Ç B
-
-
-
-
-
-
-